celery 简介
Celery 是一个专注于实时处理和任务调度的分布式任务队列, 同时提供操作和维护分布式系统所需的工具.. 所谓任务就是消息, 消息中的有效载荷中包含要执行任务需要的全部数据.
Celery 是一个分布式队列的管理工具, 可以用 Celery 提供的接口快速实现并管理一个分布式的任务队列.
Celery 本身不是任务队列, 是管理分布式任务队列的工具. 它封装了操作常见任务队列的各种操作, 我们使用它可以快速进行任务队列的使用与管理.
Celery 特性 :
方便查看定时任务的执行情况, 如 是否成功, 当前状态, 执行任务花费的时间等.
使用功能齐备的管理后台或命令行添加,更新,删除任务.
方便把任务和配置管理相关联.
可选 多进程, Eventlet 和 Gevent 三种模型并发执行.
提供错误处理机制.
提供多种任务原语, 方便实现任务分组,拆分,和调用链.
支持多种消息代理和存储后端.
Celery 是语言无关的.它提供了python 等常见语言的接口支持.
使用场景
异步任务:将耗时操作任务提交给Celery去异步执行,比如发送短信/邮件、消息推送、音视频处理等等
定时任务:定时执行某件事情,比如每天数据统计
Django中使用Celery
1、 在项目目录下创建celeryconfig.py
import djcelery
djcelery.setup_loader()
CELERY_IMPORTS=(
'app01.tasks',
)
#有些情况可以防止死锁
CELERYD_FORCE_EXECV=True
# 设置并发worker数量
CELERYD_CONCURRENCY=4
#允许重试
CELERY_ACKS_LATE=True
# 每个worker最多执行100个任务被销毁,可以防止内存泄漏
CELERYD_MAX_TASKS_PER_CHILD=100
# 超时时间
CELERYD_TASK_TIME_LIMIT=12*30
2、 在app01目录下创建tasks.py
from celery import task
@task
def add(a,b):
with open('a.text', 'a', encoding='utf-8') as f:
f.write('a')
print(a+b)
3、 视图函数views.py
from django.shortcuts import render,HttpResponse
from app01.tasks import add
from datetime import datetime
def test(request):
# result=add.delay(2,3)
ctime = datetime.now()
# 默认用utc时间
utc_ctime = datetime.utcfromtimestamp(ctime.timestamp())
from datetime import timedelta
time_delay = timedelta(seconds=5)
task_time = utc_ctime + time_delay
result = add.apply_async(args=[4, 3], eta=task_time)
print(result.id)
return HttpResponse('ok')
4、 settings.py
#INSTALLED_APPS = [
# 'djcelery',
# 'app01'
#]
from djagocele import celeryconfig
BROKER_BACKEND='redis'
BOOKER_URL='redis://127.0.0.1:6379/1'
CELERY_RESULT_BACKEND='redis://127.0.0.1:6379/2'